Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Infect Dis Model ; 7(1): 122-133, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1778179

ABSTRACT

We analyzed the number of cumulative positive cases of COVID-19 as a function of time in countries around the World. We tracked the increase in cases from the onset of the pandemic in each region for up to 150 days. We found that in 81 out of 146 regions the trajectory was described with a power-law function for up to 30 days. We also detected scale-free properties in the majority of sub-regions in Australia, Canada, China, and the United States (US). We developed an allometric model that was capable of fitting the initial phase of the pandemic and was the best predictor for the propagation of the illness for up to 100 days. We then determined that the power-law COVID-19 exponent correlated with measurements of human mobility. The COVID-19 exponent correlated with the magnitude of air passengers per country. This correlation persisted when we analyzed the number of air passengers per US states, and even per US metropolitan areas. Furthermore, the COVID-19 exponent correlated with the number of vehicle miles traveled in the US. Together, air and vehicular travel explained 70% of the variability of the COVID-19 exponent. Taken together, our results suggest that the scale-free propagation of the virus is present at multiple geographical scales and is correlated with human mobility. We conclude that models of disease transmission should integrate scale-free dynamics as part of the modeling strategy and not only as an emergent phenomenological property.

2.
Sci Rep ; 11(1): 23286, 2021 12 02.
Article in English | MEDLINE | ID: covidwho-1550344

ABSTRACT

The reproduction number of an infectious disease, such as CoViD-19, can be described through a modified version of the susceptible-infected-recovered (SIR) model with time-dependent contact rate, where mobility data are used as proxy of average movement trends and interpersonal distances. We introduce a theoretical framework to explain and predict changes in the reproduction number of SARS-CoV-2 in terms of aggregated individual mobility and interpersonal proximity (alongside other epidemiological and environmental variables) during and after the lockdown period. We use an infection-age structured model described by a renewal equation. The model predicts the evolution of the reproduction number up to a week ahead of well-established estimates used in the literature. We show how lockdown policies, via reduction of proximity and mobility, reduce the impact of CoViD-19 and mitigate the risk of disease resurgence. We validate our theoretical framework using data from Google, Voxel51, Unacast, The CoViD-19 Mobility Data Network, and Analisi Distribuzione Aiuti.


Subject(s)
Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/transmission , Movement , Contact Tracing , Humans , Italy/epidemiology , Models, Theoretical , Physical Distancing , Quarantine , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL